How do roots elongate in a structured soil?

نویسندگان

  • Kemo Jin
  • Jianbo Shen
  • Rhys W Ashton
  • Ian C Dodd
  • Martin A J Parry
  • William R Whalley
چکیده

In this review, we examine how roots penetrate a structured soil. We first examine the relationship between soil water status and its mechanical strength, as well as the ability of the soil to supply water to the root. We identify these as critical soil factors, because it is primarily in drying soil that mechanical constraints limit root elongation. Water supply to the root is important because root water status affects growth pressures and root stiffness. To simplify the bewildering complexity of soil-root interactions, the discussion is focused around the special cases of root elongation in soil with pores much smaller than the root diameter and the penetration of roots at interfaces within the soil. While it is often assumed that the former case is well understood, many unanswered questions remain. While low soil-root friction is often viewed as a trait conferring better penetration of strong soils, it may also increase the axial pressure on the root tip and in so doing reduce the rate of cell division and/or expansion. The precise trade-off between various root traits involved in root elongation in homogeneous soil remains to be determined. There is consensus that the most important factors determining root penetration at an interface are the angle at which the root attempts to penetrate the soil, root stiffness, and the strength of the soil to be penetrated. The effect of growth angle on root penetration implicates gravitropic responses in improved root penetration ability. Although there is no work that has explored the effect of the strength of the gravitropic responses on penetration of hard layers, we attempt to outline possible interactions. Impacts of soil drying and strength on phytohormone concentrations in roots, and consequent root-to-shoot signalling, are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flooding tolerance: suites of plant traits in variable environments

Flooding regimes of different depths and durations impose selection pressures for various traits in terrestrial wetland plants. Suites of adaptive traits for different flooding stresses, such as soil waterlogging (short or long duration) and full submergence (short or long duration – shallow or deep), are reviewed. Synergies occur amongst traits for improved internal aeration, and those for ano...

متن کامل

How plants communicate using the underground information superhighway.

The rhizosphere is a densely populated area in which plant roots must compete with invading root systems of neighboring plants for space, water, and mineral nutrients, and with other soil-borne organisms, including bacteria and fungi. Root-root and root-microbe communications are continuous occurrences in this biologically active soil zone. How do roots manage to simultaneously communicate with...

متن کامل

Do we know how plants sense a drying soil?

The reduction of crop growth and yield in dry areas is largely due to stomatal closure in response to dry soil, which decreases photosynthesis. However, the mechanism that causes stomatal closure in a drying soil is a controversial issue. Experienced and respected plant physiologists around the world have different views about the primary sensor of soil water shortage in plants. The goal of thi...

متن کامل

Wheat Root Growth as Affected by Soil Strength

Soil compaction is a common problem that affects several soil properties and plant growth. In order to assess the effects of soil strength expressed by its mechanical resistance on roots, a growth chamber experiment was conducted at the Universidade Federal do Rio Grande do Sul, Porto Alegre, in 1994, during 35 days (530 GDD, 0oC base temperature) on a typical Paleudult soil. Treatments, using ...

متن کامل

How Mangroves Salinize the Soil How Mangroves Salinize the Soil

A transient one-dimensional model of the vertical movement of water and salt in the mangrove root zone is investigated. This is an extension of a previous steady state model which assumed that the ability of the mangrove roots to take up water is uniformly distributed throughout the soil and that the root water uptake is reduced if there is nonzero salt concentration around the roots. We show h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 64 15  شماره 

صفحات  -

تاریخ انتشار 2013